Saturday 24 September 2016

Mass and Weight......never get confused

It's very easy to do when you're not entirely sure of how science actually defines them. Even though they're both linked, I've put together a fairly comprehensive description which, more importantly, is written in layman's terms and not scientific babble!

WHAT IS MASS?

Mass is a scientific measure of the amount of matter an object is made up of. No matter where you are at given moment in time, mass is constant. So, whether you're walking to the shop to stock up on groceries or bouncing around on the moon, your mass is the same.

Some other key points about mass

  1. Mass is indestructible. As you've seen above, no matter where you are in the universe your mass will never change
  2. Mass can never be zero. What we mean by this is that everything in the universe has mass. If it didn't it simply wouldn't exist
  3. Mass is not related to gravity, centrifugal force, etc and these forces have no effect whatsoever on your mass
  4. Mass is commonly measured in kilograms and grams.

WHAT IS WEIGHT?

Weight is a form of measurement that is dependent on gravity and, unlike mass, your weight can vary depending on where you are in the universe.

Some key points about weight

  1. The weight of an object changes based on where it is. If you've decided to visit the moon to test out this theory then you'll find that, in a matter of hours, you will have slashed your weight by two thirds (in your face, Slimming World!)
  2. Weight is a vector and its direction of pull is towards the centre of the planet you're stood on. What? Sorry, I did promise layman's terms: gravity, which is created by the mass of an object, moves towards the centre of the object and it is gravity that determines your, or any other object's, weight.
  3. The weight of any given object can go up or down depending on the amount of gravity acting on it. More gravity - the heavier the object. Less gravity - the lighter the object.
  4. Unlike mass, weight can be zero. An example of this is an astronaut floating in space - there's no gravity acting on his body and, therefore, he has no weight.
  5. Weight is commonly measured in Newtons.


1 comment: